Biofunctionalization of Fluorescent Nanoparticles
نویسندگان
چکیده
The current revolution in life sciences is strongly linked to the availability of sophisticated new experimental tools that enable the manipulation of biomolecules and the study of biological processes at the molecular level using state-of-the-art imaging techniques, such as single molecule imaging. Optical microscopy is fundamental to furthering our understanding of the structural, organizational, and dynamic properties of biological systems because a wide variety of complementary, non-invasive optical techniques exemplified by wide-field microscopy techniques, such as brightfield, darkfield, phase contrast, and DIC exist. Among these optical detection techniques, fluorescence microscopy is particularly important because it facilitates highly sensitive and specific imaging experiments. In addition, more sophisticated imaging approaches such as confocal and near-field imaging provide the opportunity for 3D and sub-diffraction limit imaging, respectively. Optical microscopy is now sensitive enough to track individual molecules if they are conjugated to appropriate imaging probes. Traditionally, such single molecule probes were mm-size colloidal particles and single fluorophores [1]. Colloidal probes such as gold or fluorescently labeled polystyrene beads are typically much larger (0.1–1 mm) than the biomolecule to be studied. However, fluorescent dyes, though smaller, show pronounced photo-instabilities, including blinking (due to fluorescence intensity fluctuations) and photobleaching, thus complicating single molecule tracking experiments and other fluorescence-based long-term studies. From the above description, further progress in the field of optical single molecule imaging obviously depends on the availability of appropriate labels that combine small size and high photostability with the ability to be used in multicolor studies. Fluorescent nanoparticles fulfill these important criteria. To be used in a biological environment, these nanoprobes need to be biofunctionalized appropriately, which remains a significant challenge. The main focus of this chapter is to provide an overview of recent developments addressing the bioconjugation of fluorescent nanoparticles and their surface modification using biocompatible coatings. Section 1.2 summarizes the different types
منابع مشابه
Biofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors
Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...
متن کاملRevisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods...
متن کاملBiofunctionalization of a Fiber Optics-Based LSPR Sensor
When exposed to light, metal nanoparticles exhibit a phenomenon known as LSPR, Localized Surface Plasmon Resonance. The wavelengths at which LSPR occurs is very dependent on the refractive index of the surrounding medium. Binding of biomolecules to the surface of gold nanoparticles result in a change in the refractive index that can be detected spectrophotometrically by monitoring the LSPR peak...
متن کاملDesign of a Fluorescent Sensor Based on the Polydopamine Nanoparticles for Detection of Gallic Acid
Background: Gallic acid (GA) is one of the polyphenolic compounds with antioxidant, antimicrobial and radical scavenging activities, which plays a main role in human health against cancer and cardiovascular diseases. GA concentration can be quantitatively measured in food, medicinal plants and body fluids. Materials and Methods: In this study, MnO2 nanosheets were prepared by reducing potassium...
متن کاملManganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors
Pediatric brain tumors (PBTs) are a leading cause of death in children. For an improved prognosis in patients with PBTs, there is a critical need to develop molecularly-specific imaging agents to monitor disease progression and response to treatment. In this paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular magnetic resonance imaging (MRI) and fluoresce...
متن کامل